Axonal/glial upregulation of EphB/ephrin-B signaling in mouse experimental ocular hypertension.
نویسندگان
چکیده
PURPOSE To use a laser-induced ocular hypertension (LIOH) mouse model to examine the optic nerve head (ONH) expression of EphB/ephrin-B, previously shown to be upregulated in glaucomatous DBA/2J mice. To relate ephrin-B reverse signaling with states of axonal response to disease. METHODS LIOH was induced unilaterally in CD-1 mice by laser photocoagulation of limbal and episcleral veins. Intraocular pressure (IOP) was measured with a tonometer. EphB/ephrin-B mRNA expression was assessed by in situ hybridization on eyecup cryosections and real-time PCR. Cell specific markers were used to identify the cellular origin of EphB/ephrin-B expression. Activation of ephrin-B signaling was investigated with a phosphospecific antibody on cryosections and retinal whole-mounts. RESULTS Upregulation of EphB/ephrin-B expression occurred early within a day of IOP elevation. A transient increase of phosphorylation-dependent ephrin-B (pEB) reverse signaling was observed in ONH axons, microglia, and some astrocytes. Morphologically unaffected retinal ganglion cell (RGC) axons differed from axons with reactive aberrant trajectories by exhibiting increased pEB activation, whereas pEB levels in morphologically affected axons were comparable to those of controls. CONCLUSIONS An Eph-ephrin signaling network is activated at the ONH after LIOH in CD-1 mice, either before or coincident with the initial morphologic signs of RGC axon damage reported previously. Of note, ephrin-B reverse signaling was transiently upregulated in RGC axons at the ONH early in their response to IOP elevation but was downregulated in axons that had been damaged by glaucomatous injury and exhibited aberrant trajectories. Ephrin-B reverse signaling may mark RGC axons for damage or confer a protective advantage against injury.
منابع مشابه
Calcium channels are involved in EphB/ephrinB reverse signaling-induced apoptosis in a rat chronic ocular hypertension model
Erythropoietin-producing hepatocyte receptor B (EphB)/ephrinB reverse signaling has been revealed to be activated in chronic ocular hypertension (COH) by increasing the apoptosis of retinal ganglion cells (RGCs). However, the exact mechanism is not well understood. The present study investigated the involvement of Ca2+ channels in the apoptosis of RGCs induced by EphB/ephrinB reverse signaling ...
متن کاملEphB receptors and ephrin-B3 regulate axon guidance at the ventral midline of the embryonic mouse spinal cord.
EphB receptors and their ephrin-B ligands are required for midline guidance decisions at several rostrocaudal levels of the developing CNS. In the embryonic vertebrate spinal cord, ephrin-B3 is localized to the floor plate (FP) at the ventral midline (VM), ephrin-B1 and ephrin-B2 are expressed in the dorsal spinal cord, and decussated EphB receptor-bearing commissural axons navigate between the...
متن کاملEphB receptor tyrosine kinases control morphological development of the ventral midbrain
EphB receptor tyrosine kinases and ephrin-B ligands regulate several types of cell-cell interactions during brain development, generally by modulating the cytoskeleton. EphB/ephrinB genes are expressed in the developing neural tube of early mouse embryos with distinct overlapping expression in the ventral midbrain. To test EphB function in midbrain development, mouse embryos compound homozygous...
متن کاملEphB Forward Signaling Controls Directional Branch Extension and Arborization Required for Dorsal-Ventral Retinotopic Mapping
We report that EphB receptors direct unique axonal behaviors required for mapping the dorsal-ventral (D-V) retinal axis along the lateral-medial (L-M) axis of the superior colliculus (SC). EphBs are expressed in a D-V gradient, ephrin-B1 in a L-M gradient in SC, and ephrin-B3 at its midline. EphBs and ephrin-Bs are expressed in countergradients in retina and SC. Developmental analyses reveal th...
متن کاملUnidirectional Eph/ephrin signaling creates a cortical actomyosin differential to drive cell segregation
Cell segregation is the process by which cells self-organize to establish developmental boundaries, an essential step in tissue formation. Cell segregation is a common outcome of Eph/ephrin signaling, but the mechanisms remain unclear. In craniofrontonasal syndrome, X-linked mosaicism for ephrin-B1 expression has been hypothesized to lead to aberrant Eph/ephrin-mediated cell segregation. Here, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 51 2 شماره
صفحات -
تاریخ انتشار 2010